
DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY

Conductive Cooling of Dikes with Temperature-dependent
Thermal Properties and Heat of Crystallization

by

Paul T. Delaney

Open-File Report 86-444

This report is preliminary and has not been reviewed for
conformity with U.S. Geological Survey editorial standards

1 U.S. Geological Survey
2255 North Gemini Dr.

Flagstaff, Arizona, 86001

1986

CONTENTS Page

Abstract ... 1

Introduction ... 2

Thermal Properties ... 2

Problem Formulation .. 4

Analytical Solutions ... 7

Numerical Solutions .. 9

Use of Programs .. 11

Example .. 12

Conclusions .. 13

References ... 14

Program listing .. 16

TABLES

Symbols used ... 60

Subroutines and functions .. 61

Linking programs to subroutines and functions 62

Examples of files TAU.DAT, DTAU.DAT 63

Examples for keyboard input .. 64

FIGURES

Figure captions .. 65

Cooling of dykes p. 1

Abstract

Temperature histories obtained from transient heat-conduction theory are

applicable to most dikes despite potential complicating effects related to

magma flow during emplacement, groundwater circulation, and metamorphic

reaction during cooling. Here, machine-independent FORTRAN?7 programs are

presented to calculate temperatures in and around dikes as they cool conduct-

ively. Analytical solutions can treat thermal-property contrasts between the

dike and host rocks, but cannot address the release of magmatic heat of

crystallization after the early stages of cooling or the appreciable

temperature dependence of thermal conductivity and diffusivity displayed by

most rock types. Numerical solutions can incorporate these additional

factors. The heat of crystallization can raise the initial temperature at the

dike contact, 6 j, about 100°C above that which would be estimated if it were

neglected, and can decrease the rate at which the front of solidified magma

moves to the dike center by a factor of as much as three. Thermal

conductivity and diffusivity of rocks increase with decreasing temperature

and, at low temperatures, these properties increase still more if the rocks

are saturated with water. Models that treat these temperature dependencies

yield estimates of 0ci that are as much as 75°C beneath those which would be

predicted if they were neglected.

Key words; Numerical analysis, finite-difference method, dikes, heat

conduction, igneous intrusion, contact metamorphism.

Cooling of dykes p. 2

Introduction

Recent advances, particularly in the field of paleomagnetics, have

provided measurement techniques that allow maximum temperatures attained in

wallrocks adjacent to cooling dikes to be estimated with an accuracy of about

+25°C (&_ & , Buchan et_ al. 1980; McClelland-Brown, 1981). By combining these

results with estimates of the initial magma temperature and the thermal

properties of the magma and host rocks, it is possible to calculate the

ambient temperature of the host rocks at the time of dike emplacement. This

ambient temperature, in turn, can be combined with an estimate of the geo-

thermal gradient to determine the approximate depth of emplacement, as well as

the subsequent rate of uplift and denudation (see Buchan and Schwarz, 1986,

for a review of the method). The method uses heat-conduction theory to

determine cooling history; this is an excellent approximation for most dikes

because they cool too quickly for buoyant hydrothermal circulation to become

established. However, analytical solutions for conductive cooling are based

upon assumptions that are too restrictive to permit temperatures to be

calculated with an accuracy comparable to that of the measurements cited above

(see Delaney, 1986). It is the purpose of this paper to provide FORTRAN??

programs that allow magmatic heat of crystallization and temperature-dependent

thermal properties to be included in conductive cooling models of dikes.

Thermal properties

The accuracy of theoretical calculations for temperatures depends not

only upon validity of the assumptions used to derive solutions, but also upon

the accuracy of the thermal property data, particularly conductivity, _k,

diffusivity, K, and magmatic heat of crystallization, h_ (all mathematical

symbols are summarized in Table 1). Although_k and K vary with lithology,

these properties vary even more with temperature (Fig. 1). For most rocks at

temperatures below 200°C, ^ lies between 1.5 and 3.0 W/m°C (quartzite is a

notable exception), and K typically ranges from 0.5 to 1 xlO~6 m2 /s. Data

collected at temperatures above 500°C are sparse for most rock types.

Fortunately, thermal properties of dense basalt have been measured at

temperatures well in excess of 500°C, and extrapolation to supersolidus

conditions should not introduce large errors in thermal calculations. For

Cooling of dykes p. 3

example, Rvalues from 1 to 1.5 W/m°C and K values from 0.25- to 0.75-

xlO~6 m2 /s appear to be typical for basalt above 500°C. High-temperature

values of Jc_ and < tend to be about 1/2 to 2/3 that which would be measured at

low temperature.

Data for Jc and < can be described by a variety of empirical equations

(^.£, Ramey et_ al. , 1974); we chose

k ~ £1 + bi/(273.1546) (la)

K - *2 + l>2/(273.15+e) (Ib)

where temperature 0 is in degrees Centigrade and the coefficients are obtained

by least-squares fitting. Although equations of this form are used in the

examples cited below, any equation can be used by altering the functions

CONDM, CONDH, DIFFM, and DIFFH (Appendix 1), which return conductivity and

diffusivity of the magma and host-rocks regions, respectively, given an input

temperature. The conductivity modulus, y, defined by

T - (dk/d0)/k (2)

is returned by the functions CONDMM and CONDMH (Appendix 1), given an input

temperature.

The thermal properties summarized in Figure 1 apply to "dry" rocks. The

presence of pore water, however, can have a profound effect upon thermal

conductivity. For instance, rocks with porosities of only 1% typically have

water-saturated k_ about 10% greater than that for the dry sample (Touloukian

^t__al_', 1981, p. 428). Thermal conductivity of water-saturated rock can be

estimated from data for the dry rock using

k - k, (k /k .)* (3) -wet dry v-w air'

where 4> is porosity and the subscript _w_ refers to water (Sass et ^1_., 1971).

At modest pressures and 50°C, J^/J^r - 20, so that a rock with 10% porosity

may exhibit an increase in conductivity of -40% if saturated with water. At

20 MPa and 550°C, a characteristic pressure and temperature near a dike

contact at 2 km depth, the conductivity of water is small and J/k-j, - 2, so

Cooling of dykes p. 4

that the increase in conductivity due to water saturation is only about 7%.

The influence of water upon _k_ is therefore greatly temperature dependent.

Although measurements of conductivity and diffusivity can, in principle,

be used to estimate heat capacity per unit volume p_C_ (» JC/K) such estimates

rarely provide good fits to heat-capacity data. In this report, data for Je^

and < are used rather than data for p_C. It is nevertheless instructive to

note that heat capacity of a water-saturated rock closely follows the relation

(pjywet * (l-<j>)(p£) r + <KP.C_)W , where the subscript r denotes the rock

matrix. For temperatures typical of the upper crust, (p£) r - 2-3 MJ/m3 *°C and

(pjyw - 3-4 MJ/m3 *°C. Because, in general, <|> « 1, most heat resides in the

solid matrix and not in pore water, so that porosity and pore fluid do not

substantially influence the heat capacity of most rocks.

miThe heat released by a magma as it cools from its initial temperature 0

to its solidus temperature 0 varies with chemistry and cooling rate. For a
3

quickly quenched, glassy magma, the heat released is (pC) (0 J -0); if cooled
 m mi s

slowly to form a holocrystalline rock, then a heat of crystallization (p_h_) m is

released also. For unvesiculated magmas, the heat of crystallization per unit

volume is typically 700-1000 MJ/m3 . It is assumed to be released evenly

through the temperature interval from the intrusion temperature 0m , to the

solidus temperature. The heat of crystallization can then be treated by

defining a modified heat capacity and diffusivity:

K." m k m ^m^ *

where the subscript _m denotes the magma and the subscript JL^ denotes its

initial (uncooled) value. These modified values apply only above the solidus

temperature.

Problem formulation

Dikes are commonly idealized as tabular bodies of thickness J\ At all

positions not near the dike tip, heat conducts only in directions normal to

the contact. We position an X_ coordinate so that it originates at one of the

contacts and points away from the dike; the center of the dike is at X » -T/2.

Cooling of dykes p. 5

We wish to obtain solutions to the heat-conduction equation for temperature-

dependent thermal properties:

(pC) 30/3t_ =» 3k_3G/3X2 (5)

(Carslaw and Jaeger, 1959, Ch. 1). Heat flux is given by Fourier's law,

(£ =» -lc3G/3X_, and the gradient in this flux (right-hand side, eqs. 5) is exact­

ly balanced with the accumulation of heat (left-hand side, eqs. 5). All heats

of reaction other than the crystallization of the magma, which will be in­

corporated through use of eqs. 4 and all heat transfer arising from fluid

motion are assumed to be negligible.

From symmetry considerations, it is only necessary to consider the half-

space X^> -1/2. Thermal diffusion equations are distinguished for the host-

rock region (X > 0), the solidified-magma region (x < X < 0), and the liquid-
 g _

magma region (-T/2 < X < x 0)> where X Q ^8 tne position of the solidus isotherm 3 S

Q . Thermal properties are denoted by the subscripts h and m in the host-rock
O ^^" ^^"

and magma (dike) regions, respectively. Properties of that portion of the

dike occuppied by magma are denoted with a prime (eqs. 4); this region need

not be distinguished from the rest of the dike if no magmatic heat of

crystallization is released. The magma region diminishes in size during

cooling and disappears after the center of the dike cools beneath the solidus

temperature. After expanding the right-hand side of eq. 5, the three energy

equations are:

30/3t =» K [3 20/3X2 + k" 1 (3k,/3X)(30/3X)l (0 < X < «) (6a) h n n j

3G/3t_ = K [3 20/3X2 + k^1 (3kffl/3X)(30/3X)j (\ Q < X_ < 0) (6b)

30/3£ =» <m [3 20/3X2 + k^Ok^^OG/SX)] (-1/2 < X_ < x s J 0 > © 8) (*c)

These equations have not been solved by analytical methods for cases where k

and K have temperature dependencies similar to those exhibited by rocks; they

have been treated by numerical methods (e.£., Giberti _et^_al_. > 1984). To

obtain solutions, three initial and six boundary conditions must be specified:

Cooling of dykes p. 6

0(X>0,t-0) - 0 , 0(X <X<0,t-0) -0 0(-T/2<X<X .t-0) -0 (7a)
 hi s mi s mi

e(«,£) - 0 , 0(o~,t) - 0(o+,t) = 0 ,
hi . _ ~ . ~ c (7b)

T/2,t) - 0

Equations 7 a give the initial temperatures of the host rocks and magma. The

first condition of eq. 7b assures that temperatures at great distance from the

dike contact remain unchanged throughout the duration of cooling; the next two

conditions assure that temperatures are continuous at the dike contact (X * 0)

and at the position of the solidus isotherm (X - x) The latter three^~* S

conditions assure that heat fluxes are continuous at the dike contact and at

the position of the solidus isotherm, and that no heat crosses the mid-plane

of the dike*

Before cooling commences at the dike center, the problem posed by eqs. 6

and 7 can be written in terms of the similarity variable:

(8)

where the subscript hi denotes the host rock at its initial temperature.

Distance and time are combined into a single independent variable, and the

position of the solidus isotherm is transformed to a constant

so that x (O " !//][Incorporating the definition of y, eq. 2, the trans-
S """" "~T ~ <~

formed thermal diffusion equations can be written as:

-2n d0/dn - (Kh /Khi)l2Q/dri2 +Y h(^/dn)2] (° < n < «) (10a)

-2n d0/dn - (< /K, J[d20/dn2 +T (d0/dn)2] (X o < n < 0) (lOb) m ni m s

-2n d0/dn - (K'/K. .)[d20/dx? + Y (d0/dn)2] (< n < Xa) (10c) m ni m s

Thus, the partial differential equations 6 are transformed into nonlinear

ordinary differential equations. Equations 10 are to be solved in conjunction

with six boundary conditions:

Cooling of dykes p. 7

e(-) - e , 0(0") - 0(0+) s 0 ., 0(x") - 0(x+) = 0 ahi ^ ^ ci s s s (U)

 * mi

The problem posed by eqs. 10 and 11 is known as a Stephan problem (Carslaw and

Jaeger, 1959, Ch. 11). The properties of the transformation, eq. 8, show

that, within the assumptions of the continuum theory, the temperature at the

dike contact instantaneously rises to a value 0 . and remains unchanged until

some time after the transformation becomes invalid. This occurs when the

boundary condition 0(-°°) - Q(-T/2 t t) - 0 ., becomes invalid and must be re­

placed by ^(~T/2,_t) " 0; this is when cooling commences at the dike center.

Analytical solutions

For brevity and to emphasize scaling relations, analytical solutions are

often written in terms of nondimensional variables. Nondimensional distance,

time, and temperature are given by:

x - X/(T/2) (12a)

T - £'<hi/(T/2) 2 (12b)

8 = (0-0, .)/(0 .-©K .) (12c)
hi mi hi

Distance is normalized by dike half-thickness, time by the diffusivity of the

host rocks at ambient temperature and the square of dike half-thickness, and

temperature by the initial temperature difference between the magma and host

rocks. All analytical solutions require that Je. Jk, , K , and K^ (Eic ni) be

constants.

Early-time solutions. The solution to the problem posed by eqs. 10 and

11, is:

8 - 1 - (1-6)[2-erfc(n/< /<")]/[2-erfcfX /< /<')] (n <X) (13a)
s h m s h m s

8 - 8 + (8 -8 Verf(n/< /<)/erf(X /< /<) (X <n<0) (13b)
ci sci hm' ^shnr s

e - e 4 erfc(n) (n>o) (I3c)
cl

Cooling of dyk.es p. 8

(see Carslaw and Jaeger, 1959, Ch. 11) where erf is the error function and

erfc its compliment. Differentiating eqs. 13 to obtain heat fluxes, and re­

quiring that heat flux into and out of the interfaces between adjoining

regions be the same, we obtain two equations to determine the unknowns A and
8

9 .: ci

/ic/ic'(l-9)'e~X s K h/ K m /< /< (9 -0 ,) e~X sK h/lc m
h m s h m s ci

. o (14a)
2 - erfcfA /K /K') erf(A /K /< }

v s h m' v s h m'

(k /k V7~7ir~(e -e)
-=5-^ h m 6 Ci - -6-0 (14b)

erf(-A /T7T) ci
v s h nr

If the magma is quenched quickly such that (pji)_ * 0, then 0 » 0 ., A + -«,

and temperatures are given by eqs. 13b, 13c, and 14b only. Equations 13 and

14 are used in the program EARLYA (Appendix 1) to provide temperatures as 0(ri)

and 0(_X,_t).

Whole-time solution. The most general analytical solution to the problem

posed by eqs. 6 and 7 is:

_ __ » 2ja-x 2n+x .
6 --5-! I (-c)-" 1 [erff =1 -c» erff ^ 1 - erff)} (-2<x<0) (15a)

n-i /4di /4di

6 - -^ {(1+c) I (-c)- ^erfCJ^l - erf(-~)} (x>0) (15b)
/4T

where

d - k /k, m n .,., . £ - (16a)
d + k /k in n

d - /K /< (16b)
 m h x '

(Lovering, 1936). The initial temperature at the dike contact is given by:

6 - (17)
01 k /k + /K /<

 m h m h

Equations 15-17 show that temperatures are affected by thermal property

contrasts, rather than the absolute values of those properties. If k /Jc^

Km/lc h " l > then

Cooling of dykes p. 9

8 - i {erfl(2-x)//7PF] - erf [x//*T]} (18)

so that the initial contact temperature is 6 . - 0.5. Equations 15 and 16, or

IS, can be used to estimate the influence of the magma tic heat of

crystallization on temperatures in the wallrocks by defining an equivalent

intrusion temperature

This approximation is inaccurate at distances less than about _T/4 from the

dike contact, but is acceptable at greater distances if accuracies not better

than about 40°C are acceptable (Jaeger, 1964).

The program WHOLEA (Appendix 1) provides temperatures as Q(%_>t)> as well

as the maximum temperature 0 (X).max v '

Numerical solutions

At times less than that required for cooling to commence at the dike

center, numerical solutions to the problem posed by eqs. 6 and 7 are not

accurate unless a great number of finite-difference nodes are used. Rather,

at early times, eqs. 10 and 11 are solved, and temperatures are then converted

from 0(ri) to Q(X_»_t)» This temperature distribution is used as an initial

condition for subsequent solution of eqs. 6 and 7.

Early-time solutions. Integration of eqs. 10 are executed by a Runge-

Kutta method (Thompson, 1970) for first-order differential equations. Each

eq. 10 is converted to two first-order equations by the substitution

\l> - de/ch (20)

which must be solved in conjunction with

Cooling of dykes p. 10

- (< /< 4)[di|»/dn + Y.^2] (0 < n < ») (21a) n nl n

-2TVJ; - ("cn/«chl)[dt/dn + Y m<J>2] (X g < n < 0) (21b)

-2niJ> - (Km/Khi)[diJ>/ln + Ym^2] (< n < X g) (21c)

Because x occurs at a known temperature 0 , eqs. 21 b and 21c can be treated s s
as the same equation with a temperature-dependent diffusivity function that

employs eq. 4b above the solldus temperature.

Equations 20 and 21 are solved for the boundary conditions by use of the

shooting method (Hornbeck, 1975, p. 205), whereby the coupled two-point

boundary-value problems are treated as coupled Initial-value problems.

Successive quesses of 0 . and _d0/dn evaluated at n " 0 are integrated to n *

-H» and -°°. If the guesses are correct, the temperature at TI « -H» is 0u^» and

that at n - -°° is 0 .. Newton-Raphson iteration is used to find the unknown

temperature and temperature gradient at the dike wall.

The program EARLYN (Appendix 1) returns temperatures as 0(n) and 0(X,_t).

Late-time solution. Using results from either the analytical or numeric­

al early-time solution as an initial condition, temperatures are subsequently

integrated using the Crank-Nicolson method (Hornbeck, 1975, p. 275), which is

unconditionally stable for time steps of any size and retains second-order

accuracy in the finite-difference approximation of the both the space and time

derivatives. Denoting _X-nodes and _t^-nodes with _i^ subscripts and J_ super­

scripts, respectively, the finite-difference forms of each term in eqs. 6 are:

(22a)

3 2 0/ax2 - ^(0^-20^+0^^ /(AX)2 + ̂ e^-M^-ie^/CAx)2 <22b)

k"l(3k/3X)(3e/3X) - [2/(k 1+k]-i(k+k)(0-0)/(2AX)2 (22c)

where all 0^ are unknown temperatures at the t^ time. Equations 22 assure

conservation of energy between each node, so that all boundary conditions,

except those at JC « -T/2 and*, are automatically satisfied. If there are _n

Cooling of dykes p. 11

JC-nodes, then there is a system of _tv-2 equations of the form of eqs. 22, the

remaining two nodes being subject to the remaining boundary conditions.

Equation 22c is nonlinear because Jk/ is a function of T^*" . To linearize

this term, Jkp is initially set equal to JcJ ; iteration is then used to re­

compute _kj3 until it has an arbitrarily small effect upon the calculated

temperature 0J . When written in matrix form to solve for the _n unknown

temperatures, the coefficients form a tridiagonal matrix; this system is

easily solved using the Thomas algorithm (von Rosenberg, 1975). A similar

solution method was devised by Sanford (1982) for binary diffusion.

The program WHOLEN (Appendix 1) provides temperatures as ©(X^t), as well

as the maximum temperature 0 __(X).«_

Use of Programs

The four programs make use of 26 subroutines and functions (Table 2;

linking procedures are shown in Table 3). Before running the programs the

user must construct a file containing up to 13 times when temperatures are to

be saved and written to an output file. The number of times when temperatures

are to be saved to file must be on the first line, with the times on the

remaining lines; the first time must be zero. The user has a choice of using

nondimensional times T (eq. 12a) stored in a file named TAU.DAT or of

dimensional times in units of seconds stored in a file named DTAU.DAT (see

Table 4 for examples). The remaining input parameters are read interactively

from the default input device (keyboard, which is assumed to open automatic­

ally upon invocation as unit 5); examples are shown in Table 4. Some data are

written to the standard output device (screen, which is assumed to open auto­

matically upon invocation as unit 6) during execution; a complete listing of

input parameters and results is written to one of the files EARLYA.DAT,

WHOLEA.DAT, EARLYN.DAT or WHOLEN.DAT upon completion of all calculations.

Error conditions are written to the standard error output (screen, assumed to

open automatically as unit 0). Data files are opened and closed with calls to

subroutines FOPEN and FCLOSE; it is user's responsibility to assure that

opening and closing of files conform to the conventions documented in those

subroutines (see Appendix).

Cooling of dykes p. 12

Example

To illustrate the application of the programs and isolate the influence

of the temperature dependence of thermal properties, consider the intrusion of

a basaltic magma at an initial temperature of 1150°C to form a 2-m-thick dike

in a sequence of basaltic lava flows at an ambient temperature of 50°C. If

restricted to results of analytical solutions, one would be tempted to use

eq. 18 (k^/ku * ^m/^h * ^' Temperature as a function of distance and time

for j^/k^ * 'SnAh * ^ *s shown *n Figure 2, where results are presented both

in nondimensional form and in dimensional form for this particular case (see

second column, Table 5, for input). Numerical solutions use the best fit for

the temperature dependence of k^ and < (Fig. la): k » Jc, * 0.689 +

522/(273.15+G) and *m - * h - S.OSxlCT7 -I- 1.25xlO"'+ /(273.15-H0). If the host

rock had 10% porosity and were saturated with water, then the best fit is: Jc^

- 0.250 -I- 944/(273.15+G) and < h - l.SOxlO"6 -I- 2.50xlO~V(273.15+e). A

magmatic heat of crystallization (p_h)m * 900 MJ/m3 is used and contrasted with

the case in which (p_h)m * 0 MJ/m3 . Temperatures are presented as a function

of position and time for the temperature-dependent properties of "wet" basalt

in Figure 3 (see third and fourth columns, Table 5, for input).

The analytical solution (eq. 18) indicates that 0ci » 600°C; the numeric­

al solution for "dry" basalt reveals that 0 . » 545°C, 55°C less than the

analytical solution. The numerical solution for host rocks with the

properties of "wet" basalt reveals that 0 . » 525°C, 75°C less than would be

indicated by the analytical solution. If the heat of crystallization is

released evenly in the temperature interval between 1150°C and 950°C, then the

analytical solution (eqs. 13 and 14) indicates that 0ci » 690°C; the numerical

solution reveals that © ci * 640°C, 50°C less than the analytical solution. If

the heat of crystallization is released and the host rocks have the properties

of "wet" basalt, then 0 cl - 618°C, 72°C less than would be indicated by the

analytical solution. The combined effect of treating water-saturation and the

temperature dependence of thermal properties reduces estimates of maximum

temperatures by almost as much as the latent heat of crystallization raises

them. The difference among maximum temperatures in the host rocks is greatest

Cooling of dykes p. 13

at the dike contact (Fig. 4). Maximum temperatures attained In the wallrocks

are everywhere less than would be estimated by any existing analytical method.

Conclusions

The theory of transient heat conduction remains the principal guide for

analysis of cooling of most, but by no means all, dikes. Analytical solutions

are useful for estimating temperatures and cooling rates where accuracies not

greater than about 75°C are required (Delaney, 1986), but numerical solutions

are important if temperature estimates in the vicinity of the dike contact are

reguired to be more accurate. The reason for this is two-fold. First,

analytically obtained estimates of maximum temperatures attained in the host

rocks can only approximately account for the heat of crystallization

associated with cooling, which can raise estimates of temperatures at the dike

contact by 100°C or more. Second, analytical solutions do not address the

temperature-dependence of thermal conductivity and diffusivity, which can

lower estimates of temperatures at the dike contact by 50-70°C or more. These

limitations are overcome by numerical methods of solution. However, the

accurate prediction of rock properties In situ and of the relation between

cooling rate and release of magmatic heat of crystallization limit the

accuracy that even numerical solutions can acheive.

Acknowledgements. I thank Stephen Huebner and Steven Ingebritsen of the

U.S. Geological Survey for suggestions which improved the manuscript.

Cooling of dykes p. 14

REFERENCES

Buchan, K.L., Schwarz, E.J., Symons, D.T.A., and Stupavsky, M., 1980, Remanent

magnetization in the contact zone between Columbia Plateau flows and

feeder dikes: evidence for groundwater layer at time of intrusion: Jour.

Geophys. Res., v. 85, p. 1888-1898.

Buchan, K.L., and Schwarz, E.J., 1986, Calibration and applications of the

maximum temperature profile across dike contact zones using remnant

magnetization, _Ln_ B.C. Halls and W.F. Fahrig, eds., Mafic dyke swarms:

Geol. Assoc. Canada Sp. Paper, in press.

Carslaw, H.S., and Jaeger, J.C., 1959, Conduction of Heat in Solids: 2nd.

ed., Clarendon Press, Oxford, 510 p.

Delaney, P.T., 1986, Heat-transfer during emplacement and cooling of mafic

dykes, _in_ B.C. Halls and W.F. Fahrig, eds., Mafic dyke swarms: Geol.

Assoc. Canada Sp. Paper, in press.

Giberti, G., Moreno, S., and Sartoris, G., 1984, Evaluation of approximations

in modelling the cooling of magmatic bodies: Jour. Volcanology &

Geothermal Res., v. 20, p. 297-310.

Hanley, E.J., Dewitt, D.P., and Roy, R.F., 1978, The thermal diffusivity of

eight well-characterized rocks for the temperature range 300-1000 K:

Engineering Geol., v. 12, p. 31-47.

Hornbeck, R.W., 1975, Numerical Methods: Quantum, New York, 310 p.

Jaeger, J.C., 1957, Temperature in the neighborhood of a cooling intrusive

sheet: Am. Jour. Sci., v. 255, p. 306-318.

Jaeger, J.C., 1964, Thermal effects of intrusions: Rev. Geophys., v. 2,

p. 433-466.

Jaeger, J.C., 1968, Cooling and solidification of igneous rocks, _in_ H.H. Hess

and A. Poldervaardt, eds., Basalts: Poldervaardt Treatise on Rocks of

Basaltic Composition, 2nd. vol.: John Wiley & Sons, New York,

p. 503-536.

Lovering, T.S., 1936, Heat conduction in dissimilar rocks and the use of

thermal models: Bull. Geol. Soc. Am., v. 47, p. 87-100.

McCleiland-Brown, E.A., 1981, Paleomagnetic estimates of temeratures reached

in contact metamorphism: Geol., v. 9, p. 112-116.

Ramey, H.J., Jr., Brigham, W.E., Chen, H.K., Atkinson, P.G., and Arihara, N.,

1974, Thermodynamic and hydrodynamic properties of hydrothermal

systems: Stanford Geothermal Program SGP-TR-6, Stanford, Calif., 75 p.

Cooling of dykes p. 15

Rosenberg, D.U., von, 1975, Methods for the Numerical Solution of Partial

Differential Equattions: Elsevier, New York, 128 p.

Sanford, R.F., 1982, Three FORTRAN programs for finite-difference solutions to

binary diffusion in one and two phases with composition- and time-depend­

ent diffusion coefficients: Computers & Geosciences, v. 8, pp. 235-263.

Sass, J.H., Lachenbruch, A.H., and Munroe, R.J., 1971, Thermal conductivity of

rocks from measurements on fragments and its application to heat-flow

measurements: Jour. Geophys. Res., v. 76, p. 3391-3401.

Schwarz, E.J., 1977, Depth of burial from remanent magnetization: the Sudbury

irruptive at the time of diabase intrusion (1250 Ma): Can. Jour. Earth

Sci., v. 14, p. 82-88.

Thompson, R.J., 1970, Improving roundoff in Runge-Kutta computations with

Gillfsj method: Comm. Acm., v. 13, p. 739-741.

Touloukian, Y.S., Judd, W.R., and Roy, R.F., eds., 1981, Physical Properties

of Rocks and Minerals: McGraw-Hill, New York, 548 p.

Cooling of dykes p. 16

c-345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

program earlya
c
c conductive cooling of an instantaneously emplaced dike; early-time,
c analytic solution for the cooling history, magma and host rocks can
c have different but constant thermal conductivity and diffusivity; the
c magma can release a heat of crystallization in the interval between
c its intrusion temperature and some specified lower temperature,
c solution applies until cooling commences at dyke center; before this
c time temperatures can be expressed in terms of a single variable that
c combines distance and time, temperature data is calculated at ii
c times, the first of which is 0. these times must exist in the file
c TAU.DAT or DTAU.DAT before running this program, the former are
c nondimensional times; the latter are dimensional in seconds,
c
c all variables are in units of m-k-s & degrees centigrade,
c coordinates are x and tau, and eta - x/sqrt(4*xkaph*tau).
c x « 0 at the contact; x « -dike_l/2___thickness at the dike center,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
parameter (ii-13, jj-601)
dimension tau(ii), x(jj), t(jj,ii), eta(jj), tt(jj)
external start, solve2, tmpael, tmpae2, tmpae3, finish
character ans*l
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

common /propa/ rkd, rkm, sqkapd, sqkapm, p
c
c (1) get dike half-thickness (dthck2), initial temperatures of dike
c rock and host rock (tdi, thi), and conductivity and diffusivity of
c dike rock (xkd, xkapd) and host rocks (xkh, xkaph). if a seperate
c magma region is specified (ians = 3), get latent heat of
c crystallization per unit volume (xl), solidus temperature (ts),
c as well as conductivity and diffusivity of magma (xkm, xkapm).
c provide initial quesses of initial temperature at dike contact
c (tci) and transformed position of solidification surface (xlam).
c latent heat is released evenly in the interval from tdi to ts.
c

write(6,9)
9 format(/' Include heat of crystallization ? [y/n] ?? '$)

read(5,'(la)') ans
write(6,10)

10 format(/' dike half-thickness [m]: * '$)
read(5,*) dthck2
write(6,ll)

11 format(/' initial temp, [deg.c]: dike rock & host rock * '$)
read(5,*) tdi, thi
write(6,12)

12 format(/' conductivity [w/m deg.c]: dike rock & host rock * '$)
read(5,*) xkd, xkh
write(6,13)

Cooling of dykes p. 17

13 format(/' diffuslvity [m*m/sj: dike rock & host rock - '$)
read(5,*) xkapd, xkaph
xkm » xkd
xkapm » xkapd
if (ans . eq. 'n') then
xl - O.OeO
xlam » -4.0eO
ts - tdi

else
write(6,16)

16 format(/' latent heat [j/m**3]: magma - '$)
read(5,*) xl
write(6,17)

17 format(/' solidus temp. [deg. c]: magma - '$)
read(5,*) ts
write(6,18)

18 format(/' quess: contact temp, [deg.c]: thi < tci < ts - '$)
read(5,*) tci
write(6,19)

19 format(/' solidification surface: -2 < lambda < 0 - '$)
read(5,*) xlam

endif
c
c (2) prepare distance, time & eta vectors, and associated indeces.
c

call start(x,tau,t,eta,tt,ii,jj)
c
c (3) calculate tci if there is no heat of crystallization,
c and tci and xlam by newton-raphson iteration if there is.
c

if (xl .eq. O.OeO) then
rkd - xkd/xkh
sqkapd « sqrt(xkapd/xkaph)
tci - thi + (tdi-thi)*rkd/(rkd+sqkapd)

else
rkd - xkd/xkh
rkm » xkm/xkh
sqkapd » sqrt(xkapd/xkaph)
if ((abs((tdi-ts)/(tdi-thi)) .gt. l.Oe-4) .and.

+ (abs((xl/(tdi-ts))/(xkm/xkapm)) .gt. l.Oe-4)) then
xkapmp - xkm/((xkm/xkapm)+xl/(tdi-ts))
sqkapm - sqrt(xkapmp/xkaph)

else
sqkapm - sqrt(xkapm/xkaph)

endif
itmax - 25
err - 1.0e-4*(tdi-thi)
call solveZ(tmpae3,xlam,tci,err,itmax)
if (itmax .ge. 25) stop

endif
c

write(6,90) tci
90 format(/' contact temperature * ',lpgll.4,' deg. c')

if (xl .ne. O.OeO) write(6,91) xlam

Cooling of dykes p. 18

91 fonnatC solidification surface, xlam » 'lpgll.4/)
c
c (4) find latest possible valid early-time solution,
c

do 30 i - ie-1, imax
etax - -dthck2/sqrt(4.0eO*xkaph*tau(i))
if (xl .eq. O.OeO) then
call tmpael(etax,t(l,i))

else
call tmpae2(etax,t(l,i))

endif
if ((t(l,i)-thi)/(tdi-thi) .It. 0.9995eO) goto 31

30 continue
31 ie - i - 1

c
c (5) calculate temperatures as a function of eta.
c

do 41 j - 1, jmax
if (xl .eq. O.OeO) then
call tmpael(eta(j),tt(j))

else
call tmpae2(eta(j),tt(j))

endif
41 continue

c
c (6) calculate temperatures in terms of x and tau
c

do 42 j - 1, jc-1
42 t(j,l) - tdi

t(jc,l) - tci
do 43 j - jc+1, jmax

43 t(j,l) - thi
do 44 i - 2, ie
sqrtt » sqrt(4.0eO*xkaph*tau(i))
do 45 j » 1, jmax
etax - x(j)/sqrtt
if (xl .eq. O.OeO) then
call tmpael(etax,t(j,i))

else
call tmpae2(etax,t(j,i))

endif
45 continue
44 continue

c
write(6,92)

92 format(/' analytical early-time solution is finished')
c
c (7) finish up: write data to file "earlya.dat"; "tm" is a dummy,
c

call finish(x,tau,t,eta,tt,tm,ii,jj,'ea')
c

stop
end

Cooling of dykes p. 19

4-345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

program earlyn
c
c conductive cooling of an Instantaneously emplaced dike* early-time
c numerical solution for the situation where magma and host rocks have
c different, temperature-dependent thermal conductivities and
c diffusivities, as defined by the functions condd, condmd, diffd,
c condh, condmh, & diffh. cond_ is the conductivity function for dike
c or host rocks; condm__ is the function for conductivity modulus,
c (l/k)(dk/dt); diff_ is the function for diffusivity. the magma can
c release a heat of crystallization in the interval between its
c intrusion temperature and some specified lower temperature, solution
c applies before cooling commences at the dyke center; before this time
c temperatures can be expressed in terms of a single varieable that
c combines distance and time* thus, the partial differential
c equations are converted to ordinary differential equations, and
c the transformed boundary conditions constitute a boundary-value
c problem, the method of solution, "the shooting method," treats the
c problem as an initial-value problem, the equations are then
c integrated to the "far" boundary, successive quesses (found by
c newton-raphson integration) are used to find the initial values that,
c when integrated, match the desired far boundary values, although the
c odes are second-order equations, they are converted to pairs of
c first-order equations for the numerical integration by a modified
c runge-kutta method, temperature data is calculated at ii times, the
c first of which is 0. these times must exist in the file TAU.DAT or
c DTAU.DAT before running this program, the former are nondimensional
c times; the latter are dimensional in seconds,
c
c all variables are in units of m-k-s & degrees centigrade
c coordinates are x (distance), tau (time), eta - x/sqrt(4*kap__h*tau).
c x - 0 at dike contact; x = -dike_l/2__thickness at the dike center,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
real*8 xx, dxx, yy
character*! ans
parameter (ii=13, jj«601)
dimension tau(ii), x(jj), t(jj,ii), eta(jj), tt(jj), yy(2)
external condd, condh, diffd, diffh, start, tmpnel, tmpne2,

+ tmpne3, oderk2, solve2, finish
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
c (1) get dike half-thickness (dthck2), initial temperatures of dike
c rock and host rock (tdi, thi), and conductivity and diffusivity
c functions of dike rock (akd, bkd, akapd, bkapd) and host rocks
c (akh, bkh, akaph, bkaph). get the latent heat of crystallization
c per unit volume (xl), and solidus temperature (ts). get initial
c quesses of initial temperature at dike contact (tci) and trans-
c formed position of solidification surface (xlam). latent heat is
c released evenly in the temperature interval from tdi to ts.

Cooling of dykes p. 20

c
write(6,9)

9 format(/' Include heat of crystallization ? [y/n] ?? '$)
read(5,'(la)') ans
write(6,10)

10 format(/' dike half-thickness [m]: '$)
read(5,*) dthck2
write(6,ll)

11 format(/' initial temp, [deg.c]: dike rock & host rock - '$)
read(5,*) tdi, thi
write(6,12)

12 format(/' conductivity: [w/m deg.c] - a + b/(273.15+t[deg.c])'
+ //' dike rock a, b - '$)

read(5,*) akd, bkd
write(6,13)

13 formatC host rock a, b - '$)
read(5,*) akh, bkh
write(6,!4)

14 format(/' diffusivity: [m**2/s] - a + b/(273.15+t[deg.c])'
+ //' dike rock a, b - '$)

read(5,*) akapd, bkapd
write(6,13)
read(5,*) akaph, bkaph
if (ans .le. 'n') then
ts - tdi
xlam » -4.0eO

else
write(6,16)

16 format(/' latent heat [j/m**3]: magma » '$)
read(5,*) xl
write(6,17)

17 format(/' solidus temp. [deg. c]: magma » '$)
read(5,*) ts

endif
write(6,18)

18 format(/' quess: temp, at contact [deg.c]: thi < tci < ts '$)
read(5,*) tci
write(6,19)

19 format(/' error tolerance [generally <1.0e-3] '$)
read(5,*) err

c
c (2) compute special values for the conductivity and diffusivity.
c

xkd - condd(tdi)
xkapd - diffd(tdi)
xkh - condh(thi)
xkaph - diffh(thi)

c
c (3) prepare distance, time & eta vectors, and associated indeces.
c

call start(x,tau,t,eta,tt,ii,jj)
c
c (4) initial quess of tci is provided before calling this subroutine;
c qch is a quess of the heat flux into the host-rock half-space, these

Cooling of dykes p. 21

c two parameters are sufficient to integrate the heat to x * ^infinity.
c to perform the integration to x * -infinity, we set qcd « qch*(xkd/xkh)
c where xkd and xkh are evaluated at the contact temperature, the
c integrater, looks to see when temperatures have exceeded ts, and
c positions xlain in that fashion.
c

itmax - 25
err » err*(tdi-thi)
qch - -2.0eO*(tci-thi)/sqrt(3.142eO)
call solve2(tmpne1,tci,qch,err,itmax)
err - err/(tdi-thi)
if (itmax .ge. 25) stop

c
c (5) integrate equations stopping to tabulate tempertures.
c iflag * 0: integrate equations for magma,
c iflag * 1: integrate equations for host rock
c

dxx - deta/(1.0eO*nk)
rkci * condd(tci)/condh(tci)
tt(kc) - tci

c
iflag - 0
iiflag - 0
xx - O.OeO
yy(l) - tci
yy(2) - -qch/rkci
istart - 1
do 31 j - kc-1, 1, -1
do 32 k * 1, nk
call oderk2(dxx,xx,yy,tmpne2,istart)
if ((sngl(yy(l)) .gt. ts) .and. (iiflag .eq. 0)) then
xlam * -(xx+(xx-dxx))/2.0eO
iiflag - 1

endif
32 continue
31 tt(j) - yy(l)

c
iflag - 1
xx - O.OdO
yy(l) - tci
yy(2) * qch
istart - 1
do 30 j - kc+1, jmax
do 33 k - 1, nk
call oderk2(dxx,xx,yy,tmpne2,istart)

33 continue
30 tt(j) - yy(l)

c
write(6,90) tci

90 format(/' analytical early-time solution is finished'
+ //' contact temperature « ',lpgll.4,' deg. c")

if (xl .ne. O.OeO) write(6,91) xlam
91 format(/' solidification surface, eta » ',lpgll.4,/)

c

Cooling of dykes p. 22

c (5) convert from tt(eta) to t(x,tau)
c

call tmpne3(x,tau,t,eta,11,ii,j j)
c
c (6) write data to file "earlyn.dat"; "tm" is a dummy,
c

call finish(x,tau,t,eta,tt,tm,ii,jj,'en')
c

stop
end

Cooling of dykes p. 23

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

program wholea
c
c conductive cooling of an instantaneously emplaced dike; whole-time,
c analytic solution for the cooling history, magma and host rocks may
c have different but constant thermal conductivity and diffusivity.
c no latent heat of crystallization can be included in this solution,
c unless by the method of an equivalent intrusion temperature,
c temperature data is calculated at ii times, the first of which is 0.
c these times must exist in the file TAU.DAT or DTAU.DAT before running
c this program, the former are nondimensional times; the latter are
c dimensional in seconds,
c
c all variables are in units of m-k-s & degrees centigrade,
c coordinates are x and tau.
c x » 0 at the contact; x » -dike_l/2_thickness at the dike center,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
parameter (ii-13, jj-601)
dimension tau(ii), x(jj), t(jj,ii), eta(jj), tt(jj), tm(jj)
external start, tmpael, tmpall, tmpa!2, tmpa!3, finish
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

common /propa/ rkd, rkm, sqkapd, sqkapm, p
c
c (1) get dike half-thickness (dthck2), initial temperatures of dike
c rock and host rock (tdi, thi), and conductivity and diffusivity
c of dike rock (xkd, xkapd) and host rocks (xkh, xkaph).
c

write(6,10)
10 format(/' dike half-thickness [m]: - '$)

read(5,*) dthck2
write(6,ll)

11 format(/' initial temp, [deg.c]: dike rock & host rock » '$)
read(5,*) tdi, thi
write(6,12)

12 format(/' conductivity [w/m deg.c]: dike rock & host rock » '$)
read(5,*) xkd, xkh
write(6,13)

13 format(/' diffusivity [m*m/s]: dike rock & host rock » '$)
read(5,*) xkapd, xkaph

c
c (2) prepare distance & time vectors, and associated indeces.
c

call start(x,tau,t,eta,tt,ii,jj)
c
c (3) calculate initial temperatures,
c

sqkapd » sqrt(xkapd/xkaph)
rkd = xkd/xkh
p * (sqkapd-rkd)/(sqkapd+rkd)

Cooling of dykes p. 24

tci - thi + (tdi-thi)*rkd/(rkd+sqkapd)
c

do 21 j - 1, jc-1
21 t(j,l) - tdi

t(jc,l) - tci
do 22 j = jc+1, jmax

22 t(j,l) - thi
c
c (4) calculate temperatures,
c

if ((abs(p).lt.l.Oe-5) .and. (abs(sqkapd-1.0eO).lt.l.Oe-5)) then
do 40 i - 2, imax
call tmpall(tau(i),x(l),t(l,i))
do 45 j - 2, jmax
if ((t(j-l,i)-thi)/(tdi-thi) .gt. l.Oe-4) then
call tmpall(tau(i),x(j),t(j,i))

else
t(j,i) - thi

endif
45 continue

write(6,90) tau(i), t(l,i), t(jc,i)
40 continue

else
do 41 i - 2, ie
sqrtt « sqrt(4.0eO*xkaph*tau(i))
do 46 j « 1, jmax
etal - x(j)/sqrtt

46 call tmpael(etal,t(j,i))
write(6,90) tau(i), t(l,i), t(jc,i)

41 continue
do 42 i - ie+1, imax
call tmpal2(tau(i),x(l),t(l,i))
do 47 j - 2, jmax
if ((t(j-l,i)-thi)/(tdi-thi) .gt. l.Oe-4) then
call tmpal2(tau(i),x(j),t(j,i))

else
t(j,i) - thi

endif
47 continue

write(6,90) tau(i), t(l,i), t(jc,i)
42 continue

endif
c
90 format(/' time - ',lpgll.4,' sec.: ',

+ ' temperature: dike center - ',lpgll.4,' deg. c',
+ r
+ ' contact - ',lpgll.4,' deg. c')

c
c (5) find maximum temperature attained at each position,
c

do 60 j - 1, jc-1
60 tm(j) - tdi

tm(jc) - tci

Cooling of dykes p. 25

if ((abs(p).lt.l.Oe-5) .and. (abs(sqkapd-1.0eO).lt.l.Oe-5)) then
do 61 j - jc+1, jmax
xlog - alog(x(j)/(2.0eO*dthck2+x(j)))
taum - -(2.0eOMthck2+x(j))Mthck2/(2.0eO*xkaph*xlog)

61 call tmpall(taum,x(j),tm(j))
else
taum « tau(ie+l)
do 62 j - jc+1, jmax

62 call tmpa!3(x(j),tm(j),taum)
endif

c
write(6,91)

91 format(/' analytical late-time solution is finished')
c
c (4) finish up: write data to file "wholea.dat".
c

call finish(x,tau,t,eta,tt,tm,ii,j j, 'wa')
c
990 stop

end

Cooling of dykes p. 26

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

program wholen
c
c conductive cooling of an instantaneously emplaced dike, whole-time
c numerical solution for the situation where magma and host rocks have
c different, temperature-dependent thermal conductivities and
c diffusivities, as defined by the functions condd, condmd, diffd,
c condh, condmh, & diffh. cond__ is the conductivity function for dike
c or host rocks; condm__ is the function for conductivity modulus,
c (l/k)(dk/dt); diff_ is the function for diffusivity. the magma can
c release a heat of crystallization in the interval between its
c intrusion temperature and some specified lower temperature, the
c initial temperature distribution is given by an early-time solution
c computed from either of the programs EARLYA or EARLYN, which must,
c therefore be run first, the method of solution is crank-nicolson
c with Iterative Improvement, temperature data is calculated at ii
c times, the first of which is 0. these times must exist in the file
c TAUD.DAT before running this program; these are dimensional in seconds,
c
c all variables are in units of m-k-s & degrees centigrade,
c coordinates are x and tau.
c x « 0 at the contact; x » -dike_JL/2_thickness at the dike center,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
parameter (ii-13, jj-601)
dimension tau(ii), x(jj), t(jj,ii), tm(jj)
character meth*2, str*50
external tmpnl, finish
common /prop/ tdl, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
c (1) get times when temperatures will be stored from file TAUD.DAT
c

call fopen(2,'TAUD.DAT','old','exclusive',ios)
if (ios .ne. 0) then
write(0,995)

995 format('error trying to open file TAUD.DAT')
stop

endif
read(2,'(lx,i4)') imax
read(2,'(lx,lpg!4.5)') (tau(i), i-l,imax)
call fclose(2,'keep',ios)

c
c (2) get data on temperatures, thermal properties, etc., from
c file EARLYN.DAT or EARLYA.DAT. (this means program earlyn or
c earlya must be run before wholen.)
c

write(6,l)
1 format(/' Is input file EARLYA.DAT or EARLYN.DAT ?? [a/n] ?? '$)

read(5,'(la)') meth(2:2)
write(6,3)

Cooling of dyk.es p. 27

format(/' number of iterations between output-time steps'
+ /' (generally >5) - '$)

read(5,*) itnum
write(6,

if ((meth(2:2) .eq. 'a') .or. (meth(2:2) .eq. 'A')) then
call f open(1 , 'EARLYA.DAT' , 'old' , 'exclusive' , ios)

else
call f open(1 , 'EARLYN.DAT' , 'old' , 'exclusive' , ios)

endif
if (ios .ne. 0) then
write(0,996)

996 format ('error trying to open EARLY__.DAT')
stop

endif

read(l,10) ie, jmax, tdi, thi, tci, dthck2, dx, jc, meth(2:2)
write(6,10) ie, jmax, tdi, thi, tci, dthck2, dx, jc, meth(2:2)

10 format (Ix,i4/lx,i4//lx,lpel0.3/lx,lpel0.3/lx,lpel0.3//
+ Ix,lpel0.3/lx,lpel0.3/lx,i4//lx,al/)

read(l,20) xl, ts, xlam
write(6,20) xl, ts, xlam

20 format(lx,lpel0.3/lx,lpel0.3/lx,lpel0.3/)
read (1,30) xkd, xkapd, xkh, xkaph
write (6, 30) xkd, xkapd, xkh, xkaph

30 format(lx,lpel0.3/lx,lpe!0.3/lx,lpel0.3/lx,lpel0.3/)
if (meth(2:2) .eq. 'a') then
akd a xkd
bkd - O.OeO
akapd a xkapd
bkapd - O.OeO
akh a xkh
bkh » O.OeO
akaph a xkaph
bkaph = O.OeO

else
read (1,34) akd, bkd, akapd, bkapd, akh, bkh, akaph, bkaph
write(6,34) akd, bkd, akapd, bkapd, akh, bkh, akaph, bkaph
read(l,36) err
write(6,36) err

34 format(lx,4(lpel0.3,lx)//lx,4(lpe!0.3,lx)/)
36 format(lx,lpel0.3/)

endif

c
str(l:20) - '(lx,18x, (f8.2,lx))
write(str(9:10),'(i2)')
do 70 j - 1, jmax

70 read(l,str(l:20)) x(j)
c

call fclose(l, 'keep', ios)
c
c (3) temperatures: late-time solution, t[x,tau].

Cooling of dykes p. 28

c
call tmpnl(tau,x,t,tm,ii,jj)

c
c (4) finish up: write data to file "wholen.dat"; "eta" & "tt" are dummies
c

call finish(x,tau,t, eta,tt,tm,ii,jj,'wn')
c
990 stop

end

Cooling of dykes p. 29

C2345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine tmpael(eta,t)
c
c temperature as a function of x/sqrt(4*tau). analytic and early-time
c history for cooling of a hot half-space brought instantaneously
c into contact with a cool half-space, thermal properties of the
c two bodies can differ, but are constants, the problem is
c a modification of the newmann problem discussed in chapter 11 of
c carslaw and jaeger, 1959, p. 288. sqkapd and tci must be set before
c calling this subroutine,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
external erfunc
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

common /propa/ rkd, rkm, sqkapd, sqkapm, p
c

if (eta .It. O.OeO) then
erfex » l.OeO - erfunc(eta/sqkapd)
t - tdi - (tdi-tci)*(2.0eO-erfcx)

elseif (eta .eq. O.OeO) then
t - tci

else
erfex - l.OeO - erfunc(eta)
t - thi + (tci-thi)*erfcx

endif
c

return
end

Cooling of dykes p. 30

c-345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine tmpae2(eta,t)
c
c temperature as a function of x/sqrt(4*tau). analytic and early-time
c history for cooling of a hot half-space brought instantaneously
c into contact with a cool half-space, the hot body consists of a cool
c part and a hot part that is releasing additional heat due to
c crystallization, thermal properties in these three regions can
c differ, but are constant within each, the problem is a modification
c of the newmann problem discussed in chapter 11 of carslaw and jaeger,
c 1959, p. 288. tci, ts, xlam, sqkapm, and sqkapd must be set prior
c to calling this subroutine,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
external erfunc
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

common /propa/ rkd, rkm, sqkapd, sqkapm, p
c

if (eta .It. xlam) then
erfex - l.OeO - erfunc(eta/sqkapm)
erfcl - l.OeO - erfunc(xlam/sqkapm)
t - tdi - (tdi-ts)*(2.0eO-erfcx)/(2.0eO-erfcl)

elseif (eta .eq. xlam) then
t - ts

elseif (eta .It. O.OeO) then
erfx « erfunc(eta/sqkapd)
erfl - erfunc(xlam/sqkapd)
t - tci + (ts-tci)*erfx/erfl
elseif (eta .eq. O.OeO) then
t - tci

else
erfex » l.OeO - erfunc(eta)
t - thi + (tci-thi)*erfcx

endif
c

return
end

Cooling of dykes p. 31

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine tmpae3(xl,x2,yl,y2)
c
c interface equations for the generalized newmann problem of cooling
c with latent heat xl released over the temperature interval between
c tdi to ts. these equations are derived by requiring that the heat
c lost from the zone of crystallizing magma be equal to that entering
c the zone of solidified magma (for yl), and that lost from the zone
c of solidified magma be equal to that entering the host rock (for y2).
c the first equation has a known temperature (ts) and an unknown
c position (xl); the second has a known position (0) and an unknown
c temperature (x2). called by splve2.
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
external erfunc
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, le, Jmax,
+ Jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

common /propa/ rkd, rkm, sqkapd, sqkapm, p
c

xld » xl/sqkapd
erfld » erfunc(xld)
tci - thi -I- rkd*(ts-thi)/(rkd-sqkapd*erfld)
xlm » xl/sqkapm
erfelm » l.OeO - erfunc(xlm)
yl - rkm*(tdi-ts)*exp(-xlm*xlm)*(sqkapd*erfld) +

-I- rkd* (ts-x2)*exp(-xld*xld)*(sqkapm* (2. OeO-erf elm))
y2 - tci - x2

c
return
end

Cooling of dykes p. 32

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine tmpall(tau,x,t)
c
c temperature as a function of time and position, analytic, whole
c time history for cooling of a heated slab embedded in an infinite
c body, slab and body have identical, constant thermal properties,
c carslaw and jaeger, 1959, p. 54, has an equivalent solution for a
c coordinate system with an origin at the slab center,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
external erfunc
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
sqrtt » sqrt(4.0eO*xkaph*tau)
xl - (2.0eO*dthck2+x)/sqrtt
x2 - x/sqrtt
erfxl - erfunc(xl)
erfx2 - erfunc(x2)
t - thi + (tdi-thi)*0.5eO*(erfxl-erfx2)

c
return
end

Cooling of dykes p. 33

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine tmpa!2(tau,x,t)
c
c temperature as a function of time and position, analytic, whole-time
c history for cooling of a heated slab embedded in an infinite body,
c although slab and body can have different thermal properties, they
c are constants and not functions of temperature, solution given by
c lovering, 1936, geol. soc. am. bull. 47:87-100. sqkapd and p must be
c set prior to calling this subroutine,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
external erfunc
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

common /propa/ rkd, rkm, sqkapd, sqkapm, p
c

if (x/dthck2 .It. O.OeO) then
sqrm - sqrt(4.0eO*xkapd*tau)
xl - (2.0eO*dthck2+x)/sqrm
x2 - (2.0eO*dthck2-x)/sqrm
t » erfunc(xl) - p*erfunc(x2)
do 20 1 - 2, 50
xl - (2.0eO*l*dthck2+x)/sqrm
x2 - (2.0eO*l*dthck2-x)/sqrm
tt - (-p)**(l-l)*(erfunc(xl)-p*erfunc(x2))
t - t + tt
if (abs(tt) .It. l.Oe-6) goto 30

20 continue
30 xl » x/sqrm

t - thi + (tdi-thi)*0.5eO*(1.0eO+p)*(t-erfunc(xl))
elseif (x/dthck2 .eq. O.OeO) then
sqrh sqrt(4.0eO*xkaph*tau)
xl - (2.0eO*dthck2/sqkapd)/sqrh
t » erfunc(xl)
do 22 1 - 2, 50
xl - (2.0eO*l*dthck2/sqkapd)/sqrh
tt - (-p)**(l-l)*erfunc(xl)
t - t + tt
if (abs(tt) .It. l.Oe-6) goto 32

22 continue
32 t - thi + (tdi-thi)*0.5eO*(1.0eO-p*p)*t

else
sqrh - sqrt(4.0eO*xkaph*tau)
xl - ((2.OeO*dthck2/sqkapd)-hx)/sqrh
t » erfunc(xl)
do 21 1 - 2, 50
xl - ((2.0eO*l*dthck2/sqkapd)-hx)/sqrh
tt - (-p)**(l-l)*erfunc(xl)
t - t + tt
if (abs(tt) .It. l.Oe-6) goto 31

21 continue

Cooling of dykes p. 34

31 xl * x/sqrh
t - thi + (tdi-thi)*0.5eO*(1.0eO-p)*((1.0eO+p)n-erfunc(xl))

endif
%

return
end

Cooling of dykes p. 35

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine tmpa!3(x,tm,taum)
c
c maximum temperature as a function of position, analytic, whole
c history for cooling of a heated slab embedded in an infinite body,
c although slab and body can have different thermal properties, they
c are constants and not functions of temperature, solution given by
c lovering, 1936, geol. soc. am. bull. 47:87-100. sqkapd and p must be
c set prior to calling this subroutine,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
external tmpa!2
common /prop/ tdi, thi, dthckZ, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
c (1) search to find time when dtemp/dtime » 0, for
c a given x, then calculate temperature at that time,
c

chart » dthck2*dthck2/xkaph
do 10 j » 1, 25
taumO » 0.99eO*taum
tauml » 1.01eO*taum
dtaum « tauml - taumO
dtaumO » taum - taumO
dtauml » tauml - taum
call tmpa!2(taum,x,tm)
call tmpal2(taumO,x,tmO)
call tmpa!2(tauml,x,tml)
f - (tml-tmO)/dtaum
fO » (tm-tmO)/dtaumO
fl - (tml-tm)/dtauml
fp - (fl-fO)/((dtaumO+dtauml)/2.0eO)
er - -f/fp
taum * taum + er
if (abs(er/chart) .It. l.Oe-3) then
call tmpa!2(taum,x,tm)
return

endif
10 continue

c
if (j .ge. 25) then
write(0,25)

25 format(/' tmpa!4: loop not converging!'/)
stop

endif
c

end

Cooling of dykes p. 36

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine tmpnl(tau,x,t,tm,ll,jj)
c
c temperature as a function of time and position, numerical & late-
c time history for cooling of a heated slab embedded in an infinite
c body, slab and body can have different temperature-dependent
c thermal properties,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
parameter (jjj-600)
dimension tau(ii), x(jj), t(jj,ii), ttl(jjj), tt2(jjj),

+ xkl(jjj), xk2(jjj), xkapl(jjj), xkap2(jjj), tm(jj)
external tmpnll, tmpn!2
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
c (1) initialize tt2(j) to t(j,ie), xk2(j) and rhc2(j). tt2(j) is the
c best guess of the temperature of the current time; t(j,i) is the
c temperature at the last time, tau(i); xk2(j) is the thermal
c conductivity at the best quess of the temperature of the current
c time, as is heat capacity rhc2(j). ttl, xkl & rhcl are temperature,
c conductivity & heat capacity at last successful time step.
c

jn - jmax - 1
do 1 j - 1, jc-1
tt2(j) - t(j,ie)

1 tm(j) - tdi
tt2(jc) - t(jc,ie)
tm(jc) - tci
do 2 j - jc+1, jn
tt2(j) - t(j,ie)

2 tm(j) - thi
tm(jmax) » thi

c
call tmpnll(tt2,xk2,xkap2,jjj)

c
c (2) step through successive temperatures, this gets a bit confusing,
c outside loop increments to the next time when temperatures will be
c saved in the matrix t(j,i), tau(i). the next loop increments itnum
c times from tau(i-l) to tau(i). the inside loop is only used if
c thermal properties are nonconstant, and is the iterative improvement,
c
c primary loop point; loops are for i » ie, ie+1, ie+2, ... imax.
c define time step for 2nd loop, and normalize it by dyke thick**2.
c

do 10 i - ie + 1, imax
dxtau = dx*dx/((tau(i)-tau(i-l))/itnum)

c
c secondary loop point; itnum steps between successive values of i.
c at top of loop, a successful time step has just been completed, so
c that tt2, rhc2 & xk2 are assigned to ttl, rhcl & xkl; temperatures

Cooling of dykes p. 37

c at the next time are then computed,
c

do 20 ii - 1, itnum
do 29 j - 1, jn
ttl(j) - tt2(j)
xkapl(j) - xkap2(j)

29 xkl(j) - xk2(j)
c

call tmpnl2(dxtau,ttl,tt2,xkl,xk2,xkapl,xkap2,jjj)
c
c tertiary loop point; iterative improvement, if necessary,
c tt2 is used to calculate temperature-dependent thermal props,
c t(j,i) is used only to save storage, and compare previous guess
c with the newest guess, if they are very nearly the same, then
c solution has converged and is ready to leave this loop and go
c to the next time step,
c

if (bfcd+bkh+bkapd+bkaph .ne. O.OeO) then
do 30 iii - 1, 10
do 31 j - 1, jn

31 t(j,i) - tt2(j)
call tmpnll(tt2,xk2,xkap2,jjj)
call tmpn!2(dxtau,ttl,tt2,xkl,xk2,xkapl,xkap2,jjj)
terr - abs(t(l,i)-tt2(l))
do 32 j - 2, jn

32 terr - amaxl(terr,abs(t(j,i)-tt2(j)))
if (terr/(tdi-thi) .It. err) goto 22

30 continue
22 if (iii .ge. 10) then

write(0,21)
21 format(/' problem in tempnl: not converging')

stop
endif

endif
c
c end of 3rd loop,
c
c at each time step, see if temperatures at each x-node have peaked
c out. if so, this is the maximum temperature attained at that
c position in the host rock
c

do 28 j - jc, jmax-1
28 tm(j) - amaxl(tm(j),tt2(j))
20 continue

c
c end of 2nd loop,
c

do 11 j - 1, jn
11 t(j,i) - tt2(j)

t(jmax,i) - thi
write(6,12) tau(i), t(l,i), t(jc,i)

12 format(/' time - ',lpgll.4,' sec.: ',
+ ' temperature: dike center » ',lpgll.4,' deg. c',

Cooling of dykes p. 38

+ ' contact - ',lpgll.4,' deg. c')
10 continue

c
c end of 1st loop,
c
c now find x-nodes where temperatures have not yet peaked out.
c

do 9 j » jn, jc, -1
if (tm(j) .gt. tt2(j)) goto 8

9 tm(j) - thi
c
8 write(6,90)
90 format(/' numerical late-time solution is finished')

terr - abs((t(jn,imax)-thi))
if (terr/(tdi-thi) .gt. err/10.OeO) write(0,9l)

91 format(/' beware 1 temperatures near the node furthest from the'/
+ ' dike are no longer equal to thi. perhaps the input'/
+ ' parameter ndt, in program earlya or earlyn,'
+ ' should be increased.'/)

c
return
end

Cooling of dykes p. 39

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine tmpnll(tt2,xk2,xkap2,jjj)
c
c initialize tt2, xk2 and rhc2. these are vectors of temperature,
c conductivity and heat capacity to be used as the "current guess" at
c each time step,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
dimension tt2(jjj), xk2(jjj), xkap2(jjj)
external condd, condh, diffd, diffh
common /prop/ tdi, thi, dthck.2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
 f bkapd, bkaph, iflag, itnum, err, jn

c
c heat capacity is conductivity/diffusivity, and is calculated at each
c x-node. at contact it is averaged between dike and host-rock,
c

do 1 j - 1, jc-1
xk2(j) - condd(tt2(j))

1 xkap2(j) - diffd(tt2(j))
c

xk2(jc) - (condd(tt2(jc)Hcondh(tt2(jc)))/2.0eO
xkap2(jc) - (diffd(tt2(jc))-l-diffh(tt2(jc)))/2.0eO

c
do 2 j - jc+1, jn
xk2(j) - condh(tt2(j))

2 xkap2(j) - diffh(tt2(j))
c

return
end

Cooling of dykes p. 40

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine tmpn!2(dxtau,ttl,tt2,xkl,xk2,xkapl,xkap2,jjj)
c
c finite difference equations for the cooling of a dyke (-dthck2 <* x
c <* 0) adjacent to host rocks (x >* 0), where both magma and host
c rocks have temperature-dependent thermal conductivity and heat
c capacity, the difference equations use the crank-nicolson approach
c which is unconditionally stable and has second-order accuracy,
c this routine is called iteratively: a succesion of guesses of the
c new temperature, t(j,i), is used to estimate the values of
c conductivity, xk2, and heat capacity, rhc, so that the sytem of
c equations can be solved,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
parameter (J4-600)
dimension a(j4), b(j4), c(j4), yy(j4), ttl(jjj),

+ tt2(jjj), xkl(jjj), xk2(jjj), xkapl(jjj), xkap2(jjj)
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
c (2) prepare coefficients for first eqn., x * -dthck2, the center
c of the dike, at that node, x(l), the temp gradient is zero, from
c symmetry, the temp, at the "imaginary" node on the far side of the
c dike center is the same as at the first node in from the center,
c thus, t(x(0)) - t(x(2)), where t(x(l)) is the temperature at the
c dike center,
c

xkap - (xkapl(l)+xkap2(l))/2.0eO
xtxkap * dxtau/xkap
a(l) - O.OeO

-2.0eO*(1.0eO+xtxkap)
2.0eO

yy(l) - 2.0eO*(1.0eO-xtxkap)*ttl(l) - 2.0eO*ttl(2)
c
c (3) prepare values for -dthck2 < x < infinity actually, just
c short of infinity, the third to last node,
c

do 20 j - 2, jn-1
xkap - (xkapl(j)+xkap2(j))/2.0eO
xtxkap * dxtau/xkap
xk - (xkl(j)+xk2(j))/2.0eO
dxkl - (xkl(j+l)-xkl(j-l))/(xk*4.0eO)
dxk2 - (xk2(j+l)-xk2(j-l))/(xk*4.0eO)

- l.OeO - dxk2
- -2.0eO*(1.0eCH-xtxkap)

c(j) - l.OeO + dxk2
yy(j) - 2.0eO*(1.0eO-xtxkap)*ttl(j)

+ - (1.0eO-dxkl)*ttl(j-l) - (1.0eO+dxkl)*ttl(j+l)
20 continue

c
c (4) prepare values for x * infinity, here, the next value of

Cooling of dykes p. 41

c temperature is known as a boundary condition, and can therefore
c be put on the "right-hand-side" of the system of eqns.
c thus, t(x(jn+l)) thi, which is known for all time steps.
c

xkap - (xkapl(jn)+xkap2(jn))/2.0eO
xtxkap dxtau/xkap
xk - (xkl(jn)+xk2(jn))/2.0eO
dxkl - (xkh-xkl(jn-l))/(xk*4.0eO)
dxk2 - (xkh-xk2(jn-l))/(xk*4.0eO)
a(jn) - l.OeO - dxk2
b(jn) - -2.0eO*(1.0eO+xtxkap)
c(jn) - O.OeO
yy(jn) - 2.0eO*(l.OeO-xtxkap)*ttl(jn)

+ - (1.0eO-dxkl)*ttl(jn-l) - 2.0eO*(1.0eO+dxkl)*thi
c
c (5) solve for tt2
c

call thomas(jn,a,b,c,tt2,yy,jjj)
c

return
end

Cooling of dykes p. 42

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

function condd(t)
c
c thermal conductivity of dike rock from temperature: k * a + b/t[k]
c for basalt: a - 0.6893, b - 522.3
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
condd - akd + bkd/(273.15eO+t)

c
return
end

Cooling of dykes p. 43

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

function condmd(t)
c
c thermal conductivity modulus of magma from temperature, (dk/dT)/k.
c thermal conductivity: k * a + b/t[k]
c for basalt: a - 0.6893, b - 522.3
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
tt - 273.15eO + t
xk - akd + bkd/tt
condmd - -(1.0eO/xk)*bkd/(tt*tt)

c
return
end

Cooling of dykes p. 44

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

function diffd(t)
c
c diffusivity of dike rock, kap[m*2/s] - a + b/t[k]
c for basalt: a - 0.3052e-6, b - 0.1247e-3
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
external condd
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
 f bkapd, bkaph, iflag, itnum, err, jn

c
diffd - akapd + bkapd/(t+273.15eO)

c
c take heat of crystallization into account, if necessary,
c

if ((t.gt.ts) .and. (abs((tdi-ts)/(tdi-thi)).gt.l.Oe-4)) then
xk - condd(t)
diffd - xk/((xk/diffd)+xl/(tdi-ts))
endif

c
return
end

Cooling of dykes p. 45

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

function condh(t)
c
c thermal conductivity of host rock from temperature: k - a + b/t[k]
c for basalt: a - 0.6893, b - 522.3
c sandstone: - 0.4049, - 732.9
c limestone: - 0.2101, - 630.3
c granite: - 0.5543, - 567.4
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
condh - akh + bkh/(273.15eO+t)

c
return
end

Cooling of dykes p. 46

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

function condmh(t)
c
c thermal conductivity modulus of host rock from temperature, (dk/dT)/k.
c thermal conductivity: k » a + b/t[k]
c for basalt: a - 0.6893, b - 522.3
c sandstone: - 0.4049, - 732.9
c limestone: - 0.2101, - 630.3
c granite: - 0.5543, - 567.4
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
tt - 273.15eO + t
xk - akh + bkh/tt
condmh - -(1.0eO/xk)*bkh/(tt*tt)

c
return
end

Cooling of dykes p. 47

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

function diffh(t)
c
c diffusivity of host rock: kap[m*2/s] - a + b/t[k]
c for basalt: a - 0.3052e-6, b - 0.1247e-3
c sandstone: - 0.5773e-7 - 0.3032e-3
c limestone: - 0.1464e-6 - 0.1805e-3
c granite: - 0.3147e-6 - 0.3172e-3
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
common /prop/ tdi, thi, dthckZ, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
diffh - akaph + bkaph/(273.15eO+t)

c
return
end

Cooling of dykes p. 48

c-345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine start(x,tau,t,eta,tt,ii,jj)
c
c initialize various vectors and quantities used in calculations, this
c subroutine is called by earlya, earlyn, wholea, where storage is set
c for the variables initialized here.
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
dimension tau(ii), x(jj), t(jj,ii), eta(jj), tt(jj)
character ans*l
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
c (1) make vector x.
c
c ndt : number of dike thickness solution will be taken from contact,
c nndt: number of nodes per dike thickness.
c jmax: total number of nodes. (jmax-l)/2 must be an even number,
c and jmax must be less than jj.
c jc : index where x(jc) "0 s" dike contact,
c dx : distance between x-points.
c

write(6,l)
1 format(/' ndt: # of dike half-thicknesses away from contact'

+ /' that are to be included in solution'
+ //' $ EARLYA if output will be used by $'
+ /' £ EARLYN WHOLEN, then ndt > 15 $'
+ //' nndt: v of nodes per dike half-thickness.'
+ //' (ndt+l)*nndt <- 600, ndt, nndt - '$)

read(5,*) ndt, nndt
c

do 7 j - 0, 10
nndt * nndt + j
jmax - nndt*(ndt+l) + 1
jmax2 - (jmax-l)/2
if (jmax-1 .eq. jmax2*2) goto 8

7 continue
8 if (jmax .gt. jj) then

write(6,2)
2 format(/' Too many nodes!!!'/)

stop
endif
jc - nndt + 1
dx - dthck2/nndt
do 3 j « 1, jmax

3 x(j) - -dthck2 + (j-l)*dx
c
c (2) make vector eta » x/sqrt(4*kappa_h*tau) and associated indeces
c
c kc: index where eta(kc) » 0 =» dike contact,
c nk: number of nodes between successive values of eta such that

Cooling of dykes p. 49

c at least 100 nodes are used in each numerical integration
c of the early-time equations.
c

deta - 5.0eO/(jmax-l)
do 6 k - 1, jmax

6 eta(k) - (-2.5eO) + (k-l)*deta
kc - 2.5eO/deta + 1
do 4 nk - 1, 200
if (nk*kc .ge. 100) goto 5

4 continue
5 continue

c
c (3) get times when temperatures are to be calculated, there are
c ii times, but the first one must be 0. the times are stored in the
c files TAUN.DAT or TAUD.DAT, one time per line. TAUD.DAT must have
c time values in units of seconds; TAUN.DAT has nondimensional times,
c which are converted to dimensional values using dyke half-thickness
c and the diffusivity of the host rocks at ambient temperature,
c
c imax : number of times when solutions are calculated (Oii).
c ie : number of times when solutions are calculated
c using early-time approximations,
c penet: penetration time for temperatures to first begin
c dropping at dike center, approximate and
c conservatively estimated.
c chart: characteristic cooling time, used to convert from
c nondimensional to dimensional times, most cooling
c is finished when tau - chart,
c

chart - dthck2*dthck2/xkaph
penet - 0.5eO*(dthck2*dthck2/(16.0eO*xkapd))
ie - 0

c
write(6,ll)

11 format(/' input times are in files TAUD.DAT [Dimensional]'
+ /' or TAUN.DAT [Nondimensional]'
+ /' which one?? [d/n] ? '$)

read(5,'(la)') ans
if ((ans .eq. 'n') .or. (ans .eq. 'N')) then
call fopen(1,'TAUN.DAT','old','exclusive',iosO)
if (iosO .ne. 0) stop
read(l,*) imax
read(l,*) (tau(i), i-l,imax)
do 10 i - 2, imax
tau(i) - tau(i)*chart
if ((tau(i) .ge. penet) .and. (ie .eq. 0)) ie - i - 1

10 if ((i .eq. imax) .and. (ie .eq. 0)) ie - imax
rewind(l)
write(l,'(lx,i4)') imax
write(l,'(lx,lpg!4.5)') (tau(i)/chart, i-l,imax)
call fopen(2,'TAUD.DAT','unknown','exclusive',iosl)
if (iosl .ne. 0) stop
write(2,'(lx,i4)') imax
write(2,'(lx,lpg!4.5)') (tau(i), i-l,imax)

Cooling of dykes p. 50

else
call fopen(1,'TAUD.DAT','old','exclusive',iosO)
if (iosO .ne. 0) stop
read(l,*) imax
read(l,*) (tau(i), i-l,imax)
do 12 i - 2, imax
if ((tau(i) .ge. penet) .and. (ie .eq. 0)) ie - i - 1

12 if ((i .eq. imax) .and. (ie .eq. 0)) ie - imax
rewind(l)
write(l,'(lx,i4)') imax
write(l,'(lx,lpg!4.5)') (tau(i), i-l,imax)
call f open(2, 'TAUN.DAT' , 'unknown', 'exclusive', iosl)
if (iosl .ne. 0) stop
write(2,'(lx,i4)') imax
write(2,'(lx,lpg!4.5)') (tau(i)/chart, i-l,imax)
endif
call fclose(l,'keep',iosO)
call fclose(2,'keep',iosl)

*

write(6,90) jmax, dx
90 format(/' total number of nodes, jmax - ',i4

+ /' spacing between nodes, dx » ',lpgll.4,' meters'/)
*

return
end

Cooling of dykes p. 51

c-345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine finish(x,tau,t,eta,tt,tm,ii,jj,meth)
c
c write data to file, output units of time can be hours, days, years,
c starting with a summary of the input parameters, the remainder of the
c file is a matrix, the first column is distance, starting at the dike
c center (x dthck2), and going past the contact (x-0) to some
c specified distance, the remaining columns are temperatures at times
c that are laballed above each column,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
dimension tau(ii), x(jj), t(Jj,ii), eta(jj), tt(jj), tm(jj)
character meth*2, str*50, time*5
common /prop/ tdi, thi, dthck2, xkaph, xkapd, xkapm, xkh, xkd,

+ xkm, xl, ts, xlam, tci, dx, deta, imax, ie, jmax,
+ jc, nk, kc, akd, akh, akapd, akaph, bkd, bkh,
+ bkapd, bkaph, iflag, itnum, err, jn

c
c (1) figure out best units for output times
c

chart - dthck2*dthck2/xkaph
if (chart .It. 1.0e6) then
time - 'hours'
tunit - 3600.OeO

elseif (chart .It. 8.6e7) then
time =» 'days *
tunit - 3600.OeO*24.OeO

else
time » 'years'
tunit - 3600.0eO*24.0eO*365.25eO

endif
c
c (2) open output file
c

if (meth .eq. 'ea') then
call fopen(1,'EARLYA.DAT','unknown','exclusive',ios)

elseif (meth .eq. 'en') then
call fopen(l,'EARLYN.DAT','unknown','exclusive',ios)

elseif (meth .eq. 'wa') then
call fopen(1,'WHOLEA.DAT','unknown','exclusive',ios)

else
call fopen(1,'WHOLEN.DAT','unknown','exclusive',ios)

endif
if (ios .ne. 0) stop

c
c (3) put out general conditions
c

if (meth(l:l) .eq. 'e') then
write(l,10) ie, jmax, tdi, thi, tci, dthck2, dx, jc, meth(2:2)
write(l,20) xl, ts, xlam
write(l,30) xkd, xkapd, xkh, xkaph
if (meth(2:2) .eq. 'n') then
write(l,34) akd, bkd, akapd, bkapd

Cooling of dykes p. 52

write(l,35) akh, bkh, akaph, bkaph
write(l,36) err
endif
write(l,60) time
str(l:14) - '(lx, (fll.3))'
write(str(5:6),'(i2)') ie
write(l,str(l:14)) (tau(i)/tunit,i-l,ie)
write(l,'(/)')
str(l:27) - '(Ix,3(f8.2,lx), (f8.2,lx))'
write(str(16:17),'(i2)') ie
do 70 j - 1, jmax

70 write(l,str(l:27)) eta(j), tt(j), x(j), (t(j,i),i-l,ie)
else
write(l,10) imax, jmax, tdi, thi, tci, dthck2, dx, jc, meth(2:2)
write(1,30) xkd, xkapd, xkh, xkaph
if (meth(2:2) .eq. 'n') then
write(1,34) akd, bkd, akapd, bkapd
write(1,35) akh, bkh, akaph, bkaph
write(l,36) err
endif
write(l,61) time
str(l:14) - '(lx, (flO.2))'
write(str(5:6),'(i2)') imax
write(l,str(l:14)) (tau(i)/tunit,i-l,imax)
writed,'(/)')
str(l:32) - '(Ix,f9.3,lx,f6.1,2x,
write(str(21:22),'(i2)') imax
do 71 j » 1, jmax

71 write(l,str(l:32)) x(j), tm(j),
endif

c
call fclose(l,'keep',ios)

c
990 return

c
c (4) formats
c
10 format(Ix,i4,' » number of temperature-distance profiles'/

+ Ix,i4,* » number of distance data points'//
+ lx,lpe!0.3,' deg c - initial temperature of dike rocks'/
+ lx,lpe!0.3,' deg c - initial temperature of host rocks'/
+ Ix,lpel0.3,' deg c - initial temperature at contact'//
+ lx,lpe!0.3,' meters - dike half-thickness'/
+ Ix,lpel0.3,' m - distance between distance data points'/
+ Ix,i4,' - index number for x(jc) = 0 - dyke wall'//
+ lx,al,' - solution method (a - analytic, n - numeric)'/)

20 format(lx,lpel0.3,' j/m*m*m - total heat of crystallization'/
+ lx,lpe!0.3,' deg c - solidus temperature'/
+ lx,lpe!0.3,' - x(solidus)/sqrt(4*kappaJi*tau)'/)

30 format(Ix,lpel0.3,' w/m deg.c - kjn, conductivity, dike rocks'/
+ Ix,lpel0.3,' m*m/s » kappa__m, diffusivity, dike rocks'/
+ Ix,lpel0.3,' w/m deg.c - kjti, conductivity, host rocks'/
+ Ix,lpel0.3,' m*m/s - kappaji, diffusivity, host rocks'/)

34 format(lx,4(lpe!0.3,lx),'ajc, bjc, a_Jcap, bjcap dike rocks'/)

Cooling of dykes p. 53

35 format(lx,4(lpel0.3,lx),'a__k., b_k, a_kap, b_kap host rocks'/)
36 format(lx,lpe!0.3,' fractioaal maximum relative error'/)
60 format(lx,' eta t(eta) x t(x) with ',a5,

+ lx,' » time units; values on next line.'/)
61 format(lx,' x t_max t(x) with ',a5,

4- lx,' - time units; values on next line.'/)
»

end

Cooling of dykes p. 54

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

function erfunc(z)
c
c the error function; numerical recipes, p. 164
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
c

x « abs(z)
t - 1.0eO/(1.0eO+0.5eO*x)
arg - x*x + 1.26551223eO - t*(1.00002368eO+t*(0.37409196eO+

+ t*(0.09678418eO+t*(-0.18628806e(M-t*(0.27886807eO+
+ t*(-1.13520398eO+t*(1.48851587eO+t*(-0.82215223eO+
+ t*0.17087277eO))))))))

c
if (z .ge. O.OeO) then

if (arg .gt. lOeO) then
erfunc » l.OeO

else
erfunc » l.OeO - t*exp(-arg)

endif
else

if (arg .gt. lO.OeO) then
erfunc » -l.OeO

else
erfunc » -l.OeO + t*exp(-arg)

endif
endif

c
return
end

Cooling of dykes p. 55

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine oderk2(h,t,y,deriv,istart)
c
c solve the system of 2 first-order ordinary differential equations:
c
c dy(i)/dt - f(i,t,y(l),y(2)), for i - 1, 2
c
c this routine advances the solution by a distance h employing a
c fourth-order runge__kutta method, proceeding the first call, istart
c must be set to 1. upon input, t is the current distance, y is the
c current solution of the system of ordinary differential equations
c as given in subroutine deriv, wk is a work space that must be saved
c between calls to oderk. upon output, t is updated, to t+h, solution
c y is updated by dy(i)/dt - f(i,t+h,y(l),y(2)), and istart - 2 to
c signal a successful integration,
c

implicit real*8 (a-h,o-z), integer*4 (i-n)
dimension a(4), b(4), c(4), y(2), wk(2,2)
external deriv
data a /0.5eO, 0.292893219eO, 1.707106781eO, 0.166666667eO/
data b /2.0eO, l.OeO, l.OeO, 2.0eO/
data c /0.5eO, 0.292893219eO, 1.707106781eO, O.SeO/

c
if (istart .ne. 2) then
wk(l,2) - O.OeO
wk(2,2) - O.OeO
qt » O.OeO
istart » 2
call deriv(t,y,wk)

endif
c

do 105 j - 1, 4
do 104 i - 1, 2
temp - a(j)*(wk(i,l)-b(j)*wk(i,2))
w - y(i)
y(i) - y(i) + h*temp
temp - (y(i)-w)/h

104 wk(i,2) - wk(i,2) + 3.0eO*temp
temp - a(j)*(1.0eO-b(j)*qt)
w - t
t » t + h*temp
temp * (t-w)/h
qt - qt + 3.0eO*temp -
call deriv(t,y,wk)

105 continue
c

return
end

Cooling of dykes p. 56

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine thomas(n,a,b,c,x,y)
c
c the thomas algorithim is an efficient method for solving a tri-
c diagonal system of equations* the 3 central diagonals of the
c matrix are given as the 3 vectors a, b, c, each of length n. b is
c the central vector, the first element of a and the last of c are
c never referenced* note that no element of b can equal 0, and that
c b and y are altered by this routine,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
dimension a(*), b(*), c(*), x(*), y(*)

c
c forward elimination
c

do 2 i - 2, n
w - a(i)/b(i-l)
b(i) - b(i) - c(i-l)*w

2 y(i) - y(i) - y(i-l)*w
c
c back substititution.
c

x(n) - y(n)/b(n)
do 3 1 - n-1, 1, -1

3 x(i) - (y(i)-c(i)*x(i+l))/b(i)
c

return
end

Cooling of dykes p. 57

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine solve2(func, a, b,error,itmax)
c
c determination of the roots to a system of 2 equations for 2 unknowns,
c f(x) - 0, where x(l) and x(2) are the unknowns and f(l) and f(2)
c are the equations, upon input, x, a vector of length 2, is the
c initial quess of the roots; as output, it is the solution, upon
c input, itmax, is the maximum allowable number of interations, or
c quesses; as output, it is the number of quesses required to find
c the solution, error is the allowable difference between an exact
c and acceptable solution,
c

implicit real*4 (a-h,o-z), integer*4 (i-n)
dimension y(2), xl(2), yl(2), x2(2), y2(2), ddx(2)
external func

c
c begin by checking to see if present quess of x is a solution,
c

do 1 j - 1, itmax
call func(a,b,y(l),y(2))
if ((abs(y(l)) .It. error) .and. (abs(y(2)) .It. error)) then
itmax » j
return

else
write(6,91) a, b, y(l), y(2)

91 formatCfor x(l,2) -
+ ', func(x(l,2))

ddx(l) - 1.0e-4*a
ddx(2) - 1.0e-4*b
xl(l) = a + ddx(l)
xl(2) - b
x2(l) - a
x2(2) - b + ddx(2)
call func(xl(l),xl(2),yl(l),yl(2))
call func(x2(l),x2(2),y2(l),y2(2))
dyldxl - (yl(l)-y(l))/ddx(l)
dyldx2 - (y2(l)-y(l))/ddx(2)
dy2dxl - (yl(2)-y(2))/ddx(l)
dy2dx2 - (y2(2)-y(2))/ddx(2)
det - dyldxl*dy2dx2 - dy2dxl*dyldx2
ddx(l) = (y(2)*dyldx2-y(l)*dy2dx2)/det
ddx(2) - (y(l)*dy2dxl-y(2)*dyldxl)/det
a - a + ddx(l)
b - b + ddx(2)

endif
1 continue

c
itmax » j
write(6,90) itmax

90 format(/'solve2 failed after ',i4,' iterations'/)
return
end

Cooling of dykes p. 58

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine £open(uni t,name,status,acces,ios tat)
c
c note that this subroutine is highly system dependent; beware,
c

integer unit,iostat
character*(*) name,status,access

c
open(unit,status-status,iostat-iostat)

c
return
end

Cooling of dykes p. 59

c 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
c

subroutine fclose(unit,status,iostat)
c
c note that this subroutine is highly system dependent; beware,
c

integer unit,iostat
character*(*) status
close(unit,status-status,iostat-iostat)

c
return
end

Cooling of dykes p. 60

Table 1: Symbols Used

C_ heat capacity per kilogram mass
	(at constant volume)

_h^ heat of crystallization
Jc^ thermal conductivity
£ heat flux, -k«80/9X_
j[_ dike thickness
^ time
T time, t-<hi/a/2)2
X, coordinate pointed away from dike wall
xT coordinate pointed away from dike wall, 3C/(T/2)
TI similarity variable, Z
0 temperature
8 temperature, (0-0)/(0 .-©,.)
< diffusivity, k/(p£7 *_L_
X similarity constant, x /^*K,.t

	 , .. s hi p density
X interface position

Subscripts

c dike contact
h host rock
i initial
m magma
s solidus

Cooling of dykes p. 61

TABLE 2

START

FINISH

TMPAE1
TMPAE2
TMPAE3

TMPAL1
TMPAL2

TMPAL3
TMPNE1

TMPNE2

TMPNE3
TMPNL
TMPNL1

TMPNL2
ERFUNC
SOLVE2
ODERK2

THOMAS
CONDM
CONDH
CONDMM
CONDMH
DIFFM

DIFFH
FOPEN
FCLOSE

Km/K

Subroutines and Functions.

Initialize distance arrays for X_ and r\ ; read input times in non-
dimensional T or dimensiopnal _t_ form; perform initial estimate to
find greatest time when early-time solutions apply.
Write results to file, including all parameters; times are converted
to units of hours, days, or years.
Analytic early-time, calculate 0(n) for (ph) » 0 (eqs. 13b,c).
Anal, early-time, calculate 0(TI) for (p_h)m~~V 0 (eqs. 13a,b,c).
Anal, early-time, calculate 0 ^ and X (eqs. 14a,b), called before
TMPAE1 or TMPAE2.
Anal, whole-time, calculate ©(X^t) for k /ki
Anal, whole-time, calculate 0(X^_t) for
(eqs. 15a,b).
Anal, whole-time, calculate 0 (X).
Numeric early-time, driving routine for numerical integrator, called
by SOLVE2, calls ODERK2.
Num. early-time, called by integrator to evaluate eqs. 20, 21,
called by ODERK2.
Num. early-time, convert 0(ri) toOOt^t).
Num. late-time, driving routine, calls" TMPNL1, TMPNL2
Num. late-time, set arrays of temperatures and rock properties for
current time step.
Numeric late-time, set up eqs. 22a,b,c, calls THOMAS,
(function) The error function.
Newton-Raphson iteration to solve 2 equations with 2 unknowns.
Fourth-order Runge-Kutta solution for 2 Ist-order ordinary
differential equations.
Thomas algorithm for solving a tridiagonal system of equations,
(function) Calculate ̂ (0) using eq. la.
(function) Calculate Jc, (0) using eq,

(0) using eq. 2.(function)
(function)
(function)
0 > 0_
(function)
open a file
close a file

Calculate
Calculate
Calculate Y h(0) using eq. 2.

S and (p_h)m
Calculate
_ _ °'
Calculate

using eq,

using eq,

Ib, or K' using eqs. Ib, 3 if
m

Ib.

Cooling of dykes p. 62

Table 3: Linking programs to
subroutines and functions.

Analytical Numerical

EARLYA WHOLEA EARLYN WHOLEN

START
TMPAE1
TMPAE2
FINISH
SOLVE2
TMPAE3
ERFUNC
FOPEN
FCLOSE

START
TMPAE1
TMPA11
TMPA12
TMPAL3
FINISH
ERFUNC
FOPEN
FCLOSE

START
SOLVE2
TMPNE3
FINISH
TMPNE1
ODERK2
TMPNE2
CONDM
CONDMM
DIFFM
CONDH
CONDMH
DIFFH
FOPEN
FCLOSE

TMPNL
TMPNL1
TMPNL2
FINISH
THOMAS
CONDM
CONDMM
DIFFM
CONDH
CONDMH
DIFFH
FOPEN
FCLOSE

Cooling of dykes p. 63

Table 4: Examples of files TAU.DAT, DTAU.DAT

TAU.DAT DTAU.DAT (seconds)

(equivalent to TAU.DAT
(f(T/2)2 /K) if T/2 - 1 meter and

Khi n^/s)

13 13
0.0000 0.0000
2.0000e-3 2.6667e3
5.0000e-3 6.6667e3
l.OOOOe-3 1.3333e4
2.0000e-2 2.6667e4
5.0000e-2 6.6667e4
l.OOOOe-2 1.3333e5
2.0000e-l 2.6667e5
S.OOOOe-1 6.6667e5
l.OOOOe-1 1.3333e6
2.0000eO 2.6667e6
5.0000eO 6.6667e6
l.OOOOel 1.3333e7

Cooling of dykes p. 64

Table 5: Examples for keyboard input

Include heat of
crystallization ? (y/n)

dike thickness (m)

initial temperature,
magma & host rock (°C)

conductivity, magma &
host rock (W/m'°C)

conductivity coefficients
ai & bl: dike rock

host rock

diffusivity, magma
host rock (m2 /s)

diffusivity coefficients
a2 & bz: dike rock

host rock

latent heat (MJ/m3)

solidus temperature (°C)

quess Initial dike-
contact temperature (°C)

quess A S

relative error

number of dike thicknesses
from contact, & number
of points per dike thick­
ness, where temperatures
are to be calculated.

times when temperatures are
to be calclulated are in
file TAU.DAT (nondimen-
sional) or DTAU.DAT
dimensional) (n/d)

read input from EARLYA.DAT
(analytic early time) or
EARLYN.DAT (numerical
early time) (a/n)

number of time steps be­
tween times TAU?

EARLYA

7

1

1150 50

2.25 2.25

WHOLEA

1150 50

2.25 2.25

7.5e-7 7.5e-7 7.5e-7 7.5e-7

900e+6

950

700
-0.4

3 30 3 30

EARLYN

n

1

1150 50

WHOLEN

0.689 522
0.250 944

3.06e-7 1.25e-4
1.80e-7 2.50e-4

600

l.Oe-4

19 30

10

Cooling of dykes p. 65

FIGURE CAPTIONS

Thermal conductivity _k and diffusivity K as functions of temperature for

basalt (A), granite (B), limestone (C) and sandstone (D). Also shown is

heat capacity per unit volume pC_ for basalt, _k for diabase and quartzite,

and < for diabase. Data from Toulouklan jit_ jil^ (1981).

Temperature as a function of distance from dike contact at various times,

analytical solution. Thermal properties of the dike and host rocks are

identical and constant; no latent heat. Bottom and left axes are

nondimenslonal distance and time, respectively; top and right axes are

dimensional equivalents for example (Table 5, column 1).

Temperature as a function of distance from dike contact at various

times. Thermal properties of magma are that of "dry" basalt, and those

of host rocks are that of "wet" basalt with a porosity of 10%; no heat of

crystallization (Table 5, columns 3, 4).

Maximum temperature achieved in wallrocks versus distance from dike

contact. Solid lines are for constant < m/< h " ^/^h " ^ with no latent

heat (lower line) and latent heat of 900 MJ/m3 (upper line). Dotted

lines are for temperature dependent properties of "dry basalt" with

latent heat and without. Dashed lines with dots are for temperature

dependent properties of "wet basalt" host rocks with latent heat and

without. Dashed line is analytical solution using eqs. 18 and 19 to

approximate the Influence of latent heat.

FIGURE 2

FIGURE 3

M
ct

an
ca

 fr
om

 D
yf

ca
 C

on
ta

ct
, X

(m
at

ar
a)

.0

0
.9

0
1.0

0
i.s

o

.S
O

-*

to
o -n

o
.

O
O

.5

0
U

>O

O
lB

ta
nc

a
fr

om
 O

yk
a

C
on

ta
ct

,
x

-9
0
0
.

O G W

*>

